Submillisecond-response nematic liquid crystals for augmented reality displays
نویسندگان
چکیده
We report a new nematic liquid crystal (LC) mixture with an ultra-low rotational viscosity (γ1 = 53.4 mPas @ 35°C), relatively high birefringence (Δn ≈0.15), and moderate dielectric anisotropy (Δε = −2.80 @ 35°C). When employed in a liquid-crystal-on-silicon (LCoS) projector with RGB light-emitting diodes (LEDs), a sub-millisecond response time is obtained without the need for complicated overdrive circuitry. Such a fast response time enables field sequential color display, which not only triples the optical efficiency and resolution density, but also greatly suppresses the image blur and color breakup. Moreover, the required cell gap is 1.2 μm, which is still manageable for high-yield manufacturing. We believe this mixture would find widespread applications for the emerging augmented reality displays. © 2016 Optical Society of America OCIS codes: (160.3710) Liquid crystals; (230.3720) Liquid-crystal devices; (120.2040) Displays. References and links 1. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Miscrodisplay (John Wiley & Sons, 2006). 2. D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011). 3. K. Y. Chen, Y. W. Li, K. H. Fan-Chiang, H. C. Kuo, and H. C. Tsai, “Color sequential front-lit LCOS for wearable displays,” SID Int. Symp. Digest Tech. Papers 46(1), 1737–1740 (2015). 4. Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015). 5. J. Christmas and N. Collings, “Realizing automotive holographic head up displays,” SID Int. Symp. Digest Tech. Papers 47(1), 1017–1020 (2016). 6. R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016). 7. F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016). 8. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009). 9. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990). 10. T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liquid Crystal Today 21(2), 34–41 (2012). 11. A. Srivastava, V. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015). 12. L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012). 13. R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014). 14. Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013). 15. C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005). 16. M. S. Brennesholtz, “New-technology light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 39(1), 858–861 (2008). 17. K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 37(1), 1823–1826 (2006). 18. H. Mönch, G. Derra, and E. Fischer, “Optimised light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 30(1), 1076–1079 (1999). 19. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997). Vol. 7, No. 1 | 1 Jan 2017 | OPTICAL MATERIALS EXPRESS 195 #281778 http://dx.doi.org/10.1364/OME.7.000195 Journal © 2017 Received 30 Nov 2016; revised 12 Dec 2016; accepted 12 Dec 2016; published 16 Dec 2016 20. Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013). 21. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911– 3915 (1984). 22. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975). 23. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986). 24. S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990). 25. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014). 26. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
منابع مشابه
Fast-response liquid crystal phase modulators for augmented reality displays
We report three new liquid crystal mixtures optimized for the phase modulator of an augmented reality display. The mixtures exhibit a relatively high birefringence (Δn) yet low viscosity, modest dielectric anisotropy (Δε), and acceptable resistivity and UV stability. High Δn enables a thin cell gap (d≈1.7 μm) for achieving 2π phase change with a reflective Liquid-Crystal-on-Silicon (LCoS) devic...
متن کاملA submillisecond-response liquid crystal for color sequential projection displays
Fenglin Peng Abstract — We report Fangwang Gou Haiwei Chen Yuge Huang Shin-Tson Wu a new LC with low viscosity and high clearing point (Tc ~102 °C) for colorsequential projection displays. Using a 1.95-μm mixed-mode twisted nematic cell, the averaged grayto-gray response time is less than 1ms, which is ~3.6× faster than the current state of the art. Such a mixed-mode twisted nematic liquid-crys...
متن کاملFast Flexoelectric Switching in Bimesogen-doped Polymer Stabilized Uniform Lying Helix and Vertical Standing Helix of Cholesteric Liquid Crystals
We report flexoelectric liquid crystal displays based on polymer-stabilized cholesteric liquid crystals with both uniform lying helix (PSULH) and vertical standing helix (PSVSH) modes. A method to enhance the flexoelectric switching of the CLC mixture is achieved by mixing nematic liquid crystal (NLC) constituents with the addition of a giant flexoelastic coefficient bimesogenic LC dimer into a...
متن کاملSubmillisecond-response liquid crystal for high-resolution virtual reality displays.
We report a vertically-aligned liquid crystal display (LCD) device with submillisecond response time, high transmittance, and low operation voltage. The top substrate has a common electrode, while the bottom substrate consists of hole-patterned fringing-field-switching (FFS) pixel electrodes. A negative dielectric anisotropy LC is employed. In the voltage-on state, the LC directors are reorient...
متن کاملFast-response switchable lens for 3D and wearable displays.
We report a switchable lens in which a twisted nematic (TN) liquid crystal cell is utilized to control the input polarization. Different polarization state leads to different path length in the proposed optical system, which in turn results in different focal length. This type of switchable lens has advantages in fast response time, low operation voltage, and inherently lower chromatic aberrati...
متن کامل